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Why Try To Work in Health?

¢ [mprovements in health improve lives.
e Same patient — different treatments across hospitals, clinicians.

* |mproving care requires evidence.
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Why Try To Work in Health?

¢ [mprovements in health improve lives.
e Same patient — different treatments across hospitals, clinicians.

* |mproving care requires evidence.

What does it mean mean to be healthy?

3 ?
UNIVERSITY OF 2 ‘

TORONTO  vEcTor isTiTUT
TTTTTTTTTTTTTTTT



Learning What Is Healthy?

Recruit a study population.
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Learning What Is Healthy?

Learn a rule.
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Learning What Is Healthy?

Does it generalize?
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Learning What Is Healthy?

For whom does it generalize?
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Evidence in Healthcare and Health?

Randomized Controlled Trials (RCTs) are
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Evidence in Healthcare and Health?

Randomized Controlled Trials (RCTs) are rare and expensive

10 — 20% of Treatments are
based on Randomized
Controlled Trials (RCTs)

[1] Smith M, Saunders R, Stuckhardt L, McGinnis JM, Committee on the Learning Health Care System in America, Institute of Medicine. Best Care At Lower Cost: The Path To Continuously
Learning Health Care In America. Washington: National Academies Press; 2013..
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Evidence in Healthcare and Health?

Randomized Controlled Trials (RCTs) are rare and expensive, and can

encode structural biases that apply to very few people.

10 — 20% of Treatments are 6% of Asthmatics Would
based on Randomized Have Been Eligible for Their
Controlled Trials (RCTs) Own Treatment RCTs.

[1] Smith M, Saunders R, Stuckhardt L, McGinnis JM, Committee on the Learning Health Care System in America, Institute of Medicine. Best Care At Lower Cost: The Path To Continuously
Learning Health Care In America. Washington: National Academies Press; 2013.
[2] Travers, Justin, et al. "External validity of randomised controlled trials in asthma: to whom do the results of the trials apply?." Thorax 62.3 (2007): 219-223.

UNIVERSITY OF 9

TORONTO

TTTTTTTTTTTTTT
TTTTTTTTTTTTTTTT



Machine Learning What Is Healthy?

Can we use data to learn what is healthy?

Social Network Medical Records

g »

Mobile data Genomic Data
®,

_E_\ =

Internet Usage MEDICAL DATA Environmental Data
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Extracting Knowledge is Hard in Health

eData are not gathered to answer your hypothesis.
*Primary case is to provide care.

eSecondary data are hard to work with.

Heterogenous Sparse Uncertainty
Sampling Unmeasured Labels
Data Type Unreported Bias

Time Scale No Follow-up Context

3
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Lack of Expertise Is Challenging

e Media can create unrealistic expectations.
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Be Careful What You Optimize For

e ML can be confidently wrong." 2
AllConv NIiN

RN RN
18000000801

king penguin “ ﬁ starfish > ”l freight car ” remote control ” SHIP HORSE | DEER
CAR(99.7%) FROG(99.9%) AIRPLANE(85.3%)

e Humans are “natural” experts in NLP, ASR, Vision evaluation.®

(a) Husky classified as wolf (b) Explanation

[11 Nguyen, Anh, Jason Yosinski, and Jeff Clune. "Deep neural networks are easily fooled: High confidence predictions for unrecognizable images." Proceedings of the IEEE

& Conference on Computer Vision and Pattern Recognition. 2015.

: [2] Su, Jiawei, Danilo Vasconcellos Vargas, and Sakurai Kouichi. "One pixel attack for fooling deep neural networks." arXiv preprint arXiv:1710.08864 (2017). 7\
bl [3] Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "Why should i fr tyou?: Explaining the predictions of any classifier." Proceedings of the 22nd ACM SIGKDD -\
UNIVERSITY OFjinternational conference on knowledge discovery and data mining. ACM, 201
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Healthy Models Require Domain Knowledge

e Hyper-expertise makes attacks in clinical data harder to spot.’

Chest X-Ray Dermoscopy

Normal Pneumothorax Nevus Melanoma

Clean I q
1000% i 0%

e |earning without understanding is dangerous.?

“...aggressive care received by
asthmatic pneumonia patients (in the
training set) was SO effect.ive that it ) 1 HaSAsthma(x) = LOWGI’RiSk(X)”
lowered their risk of dying from
pneumonia compared to the general
population...”

[1] Finlayson, Samuel G., Isaac S. Kohane, and Andrew L. Beam. "Adversarial Attacks Against Medical Deep Learning Systems." arXiv preprint arXiv:1804.05296 (2018).
[2] Caruana, Rich, et al. "Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission." Proceedings of the 21th ACM SIGKDD International 7\
Conference on Knowledge Discovery and Data Mining. ACM, 2015. s
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Good Representations in ML for Health

Physiological

¢ Representations are useful -
abstractions of data X that
disentangle underlying factors.

e Enables semi-supervised
learning; factors explaining P(X)
are useful for learning P(Y|X).

Speechsignal x{(n) X(k) Mel

ECH e T il fiffer-bank
e Allows shared factors across ? )
many learning tasks. ol I Lo )
Y ‘j{ :;:L ‘ «—|derivatives||  1,() @_ Y, (m)
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Choosing the Right Representation For Each

Problem

e Time Series — Latent States

Multivariate Timeseries
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Choosing the Right Representation For Each
Problem

e Time Series — Latent States

Latent Belief States Over Time

Multivariate Timeseries

v
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e Text Data —» Topic Vectors

Note Note
o N Topic Vector: 50/50 Patient is sick and\ Topic Vector: 70/30
Patient is very o disoriented: wil e ] }
sick — needs Critical require help to Critical Confused
ventilation!

move around.
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Choosing the Right Representation For Each
Problem

e Time Series — Latent States

Latent Belief States Over Time

Multivariate Timeseries
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e Text Data —» Topic Vectors

N Topic Vector: 50/50

Patient is sick and ) Topic Vector: 70/30

disoriented; will s . ,
require help to Critical Confused

move around.

Patient is very
sick — needs
ventilation!

“Critical”

¢ |nstrumentation Signals — Symbols/Kernels

Time-varying Signals —pp» Kernels Quasi-periodic Signal —p» Sequence of Symbols
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Machine Learning For Health (ML4H)
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What Models are Healthy? Learning Good Representations.

Unfolding Physiological State: Mortality Modelling in Intensive Care Unit (KDD 2014); A Multivariate Timeseries
Modeling Approach to Severity of lliness Assessment and Forecasting in ICU ... (AAAI 2015);

Predicting Early Psychiatric Readmission with Natural Language Processing of Narrative ... (Nature Trans Psych 2016);
Predicting Intervention Onset in the ICU with Switching State Space Models (AMIA-CRI 2017);

Clinical Intervention Prediction and Understanding using Deep Networks (MLHC 2017/JMLR W&C V68);
Semi-supervised Biomedical Translation with Cycle Wasserstein Regression GANs (AAAI 2018);

What Healthcare is Healthy? Stratifying Human Risks.

Continuous State-Space Models for Optimal Sepsis Treatment - Deep Reinforcement Learning ... (MLHC/JMLR 2017);
Modeling Mistrust in End-of-Life Care (MLHC 2018/FATML 2018 Workshop);
The Disparate Impacts of Medical and Mental Health with Al. (In submission);

What Behaviors are Healthy? Inferring Unseen Actions and States.
Learning to Detect Vocal Hyperfunction from Ambulatory Necksurface Acceleration Features (IEEE TBME 2014);
Uncovering Voice Misuse Using Symbolic Mismatch (MLHC 2016/JMLR W&C V56);

Project BASELINE Mood Study with Alphabet’s Verily;

ClinicalVis Project with Google Brain. (*In submission);
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Machine Learning For Health (ML4H)

A l1. What Models are Healthy? Learning Good Representations. ]
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Unfolding Physiological State: Mortality Modelling in Intensive Care Unit (KDD 2014); A Multivariate Timeseries
Modeling Approach to Severity of lliness Assessment and Forecasting in ICU ... (AAAI 2015);

Predicting Early Psychiatric Readmission with Natural Language Processing of Narrative ... (Nature Trans Psych 2016);
Predicting Intervention Onset in the ICU with Switching State Space Models (AMIA-CRI 2017);

Clinical Intervention Prediction and Understanding using Deep Networks (MLHC 2017/JMLR W&C V68);
Semi-supervised Biomedical Translation with Cycle Wasserstein Regression GANs (AAAI 2018);

What Healthcare is Healthy? Stratifying Human Risks.

Continuous State-Space Models for Optimal Sepsis Treatment - Deep Reinforcement Learning ... (MLHC/JMLR 2017);
Modeling Mistrust in End-of-Life Care (MLHC 2018/FATML 2018 Workshop);
The Disparate Impacts of Medical and Mental Health with Al. (In submission);

What Behaviors are Healthy? Inferring Unseen Actions and States.
Learning to Detect Vocal Hyperfunction from Ambulatory Necksurface Acceleration Features (IEEE TBME 2014);
Uncovering Voice Misuse Using Symbolic Mismatch (MLHC 2016/JMLR W&C V56);

Project BASELINE Mood Study with Alphabet’s Verily;

ClinicalVis Project with Google Brain. (*In submission);
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MIMIC Il ICU Data e

= -:-:-ﬂunn = i L%

. t'unu-wn oo o B
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¢ | earning with real patient data from the Beth ; | R 1T .Eﬁ!
Israel Deaconess Medical Center ICU. '

4

Signals I I I I
Spurious Data . /\/ -
Missing Data I | I I

Numorcal | % o "o
rregular sampliin .
Yoporadic 30 SEEEIEEE T I % - 98 )

“ / ‘ ‘\/I ..
y DATA
o%

) Discharge
Narrative g P e e i ( Noteg J
Misspelled I I
Acronym-laden
Copy-paste _ . . . .
Age -
Biased Risk Score . i I 9 I
00:00 12:00 24:00 36:00 48:00

%ﬁ [1] Johnson, Alistair EW, et al. "MIMIC-III, a freely accessible critical care database." Scientific data 3 (2016). H e
3 I I I I I
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Problem: Hospital Decision-Making / Care Planning

Observe Patient Data “Real-time” Prediction

B N B . "y
8= Of {Drug/Mortality/Condition}

JE—* ==

o \oLeveesee _

. 5T By Gap Time

tvv:vv"- - ’Q &

8§ 0 Fod A e ¥y »
3 | AR VX Before the Doctor Acted
0 -2 J Y L\ v

_3 =
— 05 YT TV YT YT YO Ty vy ] o )
2 00 "
% 05 ] “““.’-‘QOQQ---¢”-

- '
o 40 { — -

3

2 0 2 0 40
x (1] .ee 29000 TP ®

R .. =

WAL aad — e e

(] J
2 4 -

1.0 {
Q 4 )
o 05 "”o c“possssssscses
g 00 ?-9999-?-9‘,9 cscsoee

05

i T
s sa ‘
UNIV <R IIIIIII 22



Part 1: Predict Mortality With Clinical Notes

e Acuity (severity of illness) very important - use mortality as a
proxy for acuity.’

* Prior state-of-the-art focused on feature engineering in
labs/vitals for target populations.?

e But clinicians rely on notes.

[1] Siontis, George CM, loanna Tzoulaki, and John PA loannidis. "Predicting death: an empirical evaluation of predictive tools for mortality." Archives of internal medicine

. 171.19 (2011): 1721-1726.
= [2] Grady, Deborah, and Seth A. Berkowitz. "Why is a good clinical prediction rule so hard to find?." Archives of internal medicine 171.19 (2011): 1701-1702.

UNIVLRS IIIIII 23 ‘

TORONTO  vEcTor isTiTUT
TTTTTTTTTTTTTTTT



Clinical Notes Are Messy...

Patient Y, 12:45:00 EST “\_ CONTEXT
| ) | MATTERS
uneventful day. pt much . VS Stable nuero intact no compromise NSR BP

stable Aline discontinued in afternoon. pt to transfer to floor awaiting bed. pt
continues with nausea given anziment and started on reglan prn. small emesis in
am. pt continues with ice chis. foley draining well adequate output. now replacing
half cc for cc of urine. skin and surgical site unchanged, C/D/I. ( and
) at bedSidefoy'most of day. Plan: continue with currﬁt plan in progress,

tranfer to floor.

ACRONYM

MISSPELLED

A
.;yl{!v : ‘
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Represent Patients as Topic Vectors

e Model patient stays as an aggregated set of notes.
* Model notes as a distribution over topics.

e A “topic” is a distribution over words, that we learn.

Patient is sick and\ Topic Vector: 70/30

disoriented; will
require help to
move around.

“Critical” “Confused”

e Use Latent Dirichlet Allocation (LDA)! as an unsupervised way to

abstract 473,000 notes from 19,000 patients into “topics”.?

S [1] Blei, David M., Andrew Y. Ng, and Michael I. Jordan. "Latent dirichlet allocation." the Journal of machine Learning research 3 (2003): 993-1022
[2] T. Griffhs and M. Steyvers. Finding scientific topics.In PNAS, volume 101, pages 5228{5235, 2004
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Correlation Between Average Topic Representation

and Mortality

0.36

0.31

0.26

0.z21

Propor’ltional In-hospital Mortality

0.06

0.01

Topic #

Top Ten Words

Possible Topic

15

intubated vent ett secretions propofol abg respiratory resp care sedated

Respiratory failure

Per Topic Probability of hMortality

=

In-Hospital kortality = Baseline hortality

In-Hospital hMortality < Baseline hortality

TN T A T T T T O T O O A A A

i

i

i

i

i

[ A A B

P00

I N N B
12 3 45 6 7 8

101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 36 39 40 41 42 43 44 45 46 47 48 49 50

Tonic ID

Topic #

Top Ten Words

Possible Topic

cabg, pain, ct, artery, coronary, valve, post, wires, chest, sp

Cardiovascular surgery

e
UNIVERSITY OF
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Topic Representation Improves In-Hospital
Mortality Prediction

; In-Hospital Mortality

0.95
0.9
0.85

§ 0.8
0.75
0.7
0.65
0.6

Combined Time-Varying Model

=—a==Time-varying Topic Model

=== Admission Baseline Model

™ WO 00 ™ WO 00 (] WO 00 ™~ WO 00
OaﬁMq8h§mogm§mw8m§HN
HHHHHHHH ™ N

Time (Hours from First Note)

e First to do forward-facing ICU mortality prediction with notes.
e Latent representations add predictive power.

e Topics enable accurately assess risk from notes.

¥ -‘ T
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More Complex Models Haven’t Done Better

In-Hospital Mortality

1
0.95
0.9
0.85
S 08 A
< I Combined Time-Varying Model
0.75 . . .
=—a==Time-varying Topic Model
0.7 ' —@-Admission Baseline Model
0.65 :
0.6 |
CCARIBRBIACRNINER8aZ &
I ™ 1 | = ™ - - ™~ N
A | Time (Hours from First Note)
|
Ly
R
Author AU(’JI I | Method Episodes Hours | Variables
|
Ghassemi, 2014 | 0.84/0.85 | LDA 19,308 24/48 | 53 - notes
M B Caballero, 2015 | 0.86 Text processing + 15,000 24 ? - notes/meds
ore medication
Complex 5 e 2015 0.8-0.82  Deep Learning (LSTM) 3,940 48 30 - vitals
# Better Che, 2016 0.7/0.85 Deep Learning (GRU) 19,714  12/48 | 99 — vitals/meds
Che, 2018 0.85 Deep Learning (GRU-D) 19,714 48 99 - vitals/meds

Caballero Barajas, Karla L., and Ram Akella. "Dynamically Modeling Patient's Health State from Electronic Medical Records: A Time Series Approach." Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 2015.

Che, Zhengping, et al. "Deep computational phenotyping." Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2015. ‘ T

i Che, Zhengping, et al. "Recurrent Neural Networks for Multivariate Time Series with Missin lues." arXiv preprint arXiv:1606.01865 (2016).
UNIVERSITY OF (Che 7, Purushotham S, Cho K, Sontag D, Liu Y. Recurrent neural networks for multivariate Time series with missing values. Scientific reports. 2018 Apr 17;8(1):6085.
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Even When Complex and Clever

e Explicitly capture and use missing patterns in RNNs via systematically
modified architectures.

Target Predictions:
E.g., Mortality or ICD-9

Prediction Layer

—IN (x)

out (h)

.

{ Hidden state; Inputs:
i ljjldden state | MASK(m)  Variable (x;) @ @ @ @
, decay term b
i m Masking (m;)

_+—IN (%) Time Interval (& @ @ @ @
i Input :
. decay term | 7}’\\ @

— ouT (h) ‘@

(b) GRU-D (Parts in cyan refer to the modifications.) (c) Proposed prediction model architecture with GRU-D.

¢ Performance bump is small, is MIMIC mortality our MNIST?

Non-RNN Models RNN Models

Mortality Prediction On MIMIC-Ill Dataset LSTM-Mean 0.8142 +0.014
LR-Mean 0.7589+£0.015 SVM-Mean 0.7908 +0.006 RF-Mean 0.8293+0.004 GRU-Mean 0.8252 +0.011
LR-Forward 0.7792+0.018 SVM-Forward 0.8010+0.004 RF-Forward 0.8303+0.003 GRU-Forward 0.8192 +0.013
LR-Simple 0.7715+0.015 SVM-Simple 0.8146 +0.008 RF-Simple 0.8294 + 0.007 | GRU-Simple w/o 6% 0.8367 +0.009

LR-Softimpute  0.7598 +0.017 SVM-Softimpute ~ 0.7540+0.012 RF-Softimpute 0.7855+0.011 GRU-Simple w/o m**** 0.8266 +0.009

LR-KNN 0.6877£0.011 SVM-KNN 0.7200 £0.004 RF-KNN 0.7135+0.015 GRU-Simple 0.8380 = 0.008
LR-CubicSpline 0.7270+£0.005 SVM-CubicSpline 0.6376+0.018 RF-CubicSpline 0.8339+0.007 GRU-CubicSpline 0.8180+0.011
LR-MICE 0.6965 +0.019 SVM-MICE 0.7169+0.012 RF-MICE 0.7159 + 0.005 GRU-MICE 0.7527 £0.015
LR-MF 0.7158 £ 0.018 SVM-MF 0.7266 +0.017 RF-MF 0.7234+0.011 GRU-MF 0.7843 +0.012
LR-PCA 0.7246 £ 0.014 SVM-PCA 0.7235+0.012 RF-PCA 0.7747 £ 0.009 GRU-PCA 0.8236 +0.007
LR-MissForest  0.7279+0.016 SVM-MissForest  0.7482+0.016 RF-MissForest  0.7858 +0.010 GRU-MissForest 0.8239 +0.006

Proposed GRU-D 0.8527 £ 0.003

UNIVI;HIQSITY OF 29
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Part 2: Predict Interventions With Clinical Data

e 34,148 ICU patients from MIMIC-III
e 5 static variables (gender, age, etc.)
e 29 time-varying vitals and labs (oxygen saturation, lactate, etc.)
e All clinical notes for each patient stay
variables
.<_3 - Extract as hourly
g xXx x L--7 timeseries all variables
: = learna; B ; O,; @, )  topic.
£ || doctor doctor | | _______ for K topics, D documents, N words words distribution _
E note note @ B : params for Dirichlet priors |~~~ g — - 8,
6, ~ Dir(e) : topic dist. for document d = @
8 ggﬁder ¢, ~ Dir(p) : word dist. for topic & ) ,
% | ethnicity Unsupervised LDA model tranZ?s::wr:tion
time - K for one patient

Replicate across time

a‘;"\“‘

A
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TORONTO  vEcTor isTiTUT

TTTTTTTTTTTTTTTT




Many Ways to Model, What Do We Learn?

SSAM

R
7 V"‘\\'\/

PSR %X
ZAN N
ARFE

588

Learn model parameters Infer hourly distribution Logistic regression Predict
over patients with over hidden states with (with label-balanced onset in
variational EM. HMM DP (fwd alg.). cost function) advance

LSTM
I o

- J}
I R e )

[ | . | | Input per

Z, o X, o timestep

~—

2 Layer/512 node LSTM with sequential
hourly data; at end of window, use the
final hidden state to predict output.

UNIVERSITY OF
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CNN

featuresw "Il@_—x >< ><D

Fully connected Output
layers softmax

1D temporal
convolutions

CNN for temporal convolutions at 3/4/5 hours,
max-pool, combine the outputs, and run through
2 fully connected layers for prediction.
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State Space Beliefs Improve Prediction

Vasopressor @ t+1 hr

0.9

052
. 0.8 QJZ
D
< %7 066
0‘6 i i
0.5
. . S X +X b bt+s+x
static demographics - ———— SSAM belief vector (10D) @ t
dynamic patient vitals @ t
Vasopressor @ t+4 hr Ventilator @ t+4 hr Plasma @ t+4 hr
0.9 0.9 0.9
OIZB 0.8 0.8
0.7 :
0.65 - Ol
0.6 0.56 0.6 0.55
05 -| I . 1
S X s+x b bt+s+x S X stx b bts+x s

B
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SSAM Post-hoc Interpretability

* |nterpret classifier weights across interventions.

4 vasopressor 4 ventilator 4 ffp transfusion
3 — 3 3
2 2 2
= e ——— —— ¢ +
DD | el e m— — 1 — —— L =
D ! A —zpaee —_—
e " s —
1 1 1
2 -2 -2
0. 1. 2 3: & 5 6 € & 9 Q: 1 2 3 4 5 6 T 8§ 9 0O 1 2 3 4 5 6 7 8 9
state state

e |nvestigate data associated with vasopressor onset state (9).

Average Emission Values

-0.4

-0.6
RA~KL S v oL oL 2 & )
& T L
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NNs Do Well; Improved Representation Helps

Intervention Type
Task | Model || VENT | NI-VENT | VASO | COL BOL | CRYS BOL
Baseline 0.60 0.66 0.43 0.65 0.67
8¢ | LSTMRaw | 0.61 0.75 | 0.77 0.52 0.70 R tati b
&2 | LSTMWords |[075]| 076 | 076 | [0.72 0.71 epresentations wi
CNN 0.62 ~-073 | 0.77 070 w_ 0.69 “phys|o|og|ca| words”
Baseline 0.83 0.71 Al - - .

S0 | LSTMRaw | 090 | 080 | 091 | —=— \ for missingness

=2 |LSTMWords | 090 | 081 | 091 - [T significantly increased
O CNN 0.91 0.80 | 091 2 : . .
O = Baseline 0.50 0.79 0.55 - = AUC for interventions
e 2‘8 LSTMRaw | 096 | 086 | 0.96 3 . with the lowest

I & = | LSTM Words 0.97 0.86 0.95 - - .

o CNN 096 | 086 | 096 - . proportion of examples.
O &= Baseline 0.94 0.71 0.93 - -
C 9 | LSTMRaw | 095 | 086 | 096 . -
= S22 | LSTM Words || 097 0.86 0.95 - -
S CNN 0.95 0.86 | 0.96 - -
()
b o Baseline 072 | 072 | 0.66 3 :

59 LIéSTT% vl;avcvi ggg 0.82 ggg i - Deep models perform

oras . : = = .
=< | NN | 0T 0w : well in general, but

— words are important
for ventilation tasks.

S
@ Z
‘
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NN Post-hoc Interpretability

e Feature-level occlusions identify important per-class features.

= 0.12-
T 0.10 -
c

S 0.08
B

3 0.06
3 0.04 -
S 0.02-
< 0.00-

ph -

Ventilation Onset

£E Y € g £
28858 ¢
-_—
'ngmo;;
w—oE“E
€ o
2= 2

& 030

T 0.25-

=

S 0.20-

B

2 0.15

3 0.10

“é 0.05
0.00 -

GCS -

Ventilation Weaning

ph-
sodium -

lactate
hemoglobin
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Physiological data were
more important for the
more invasive
interventions.

e Convolutional filters target known short-term trajectories.

Higher diastolic
blood pressure,
respiratory rate, and
heart rate, and lower
oxygen saturation :
Hyperventilation
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Ventilation

diastolic BP
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heart rate
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oxygen saturation
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e ———
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respiratory rate

Decreased systolic blood pressure, heart rate and

125
100
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0.30

0.15 |

0.00

Vasopressor

heart rate

oxygen saturation

R

e

systolic BP

—

topic 3

\

Non-inv. Vent

blood urea nitrogen

creatinine

oxygen saturation

oo e —
96 F

phosphate

oxygen saturation rate : Altered peripheral
perfusion or stress hyperglycemia

- top 10 trajectories
—— bottom 10 trajectories

Decreased creatinine,
phosphate, oxygen
saturation and blood
urea nitrogen :
Neuromuscular
respiratory failure
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ML for Healthcare, or ML for Health?

e Patients can be left on interventions longer than necessary.

165 Hours of Extra Intervention Time

350
300
250

200

Count

150

100

50

70 80

Hour

e Extended interventions can be costly and detrimental to patient
health.?

[1] Milliner, Marcus, Bernhard Urbanek, Christof Havel, Heidrun Losert, Gunnar Gamper, and Harald Herkner. "Vasopressors for shock." The Cochrane Library (2004).

[2] D’Aragon, Frederick, Emilie P. Belley-Cote, Maureen O. Meade, Francois Lauzier, Neill KJ Adhikari, Matthias Briel, Manoj Lalu et al. "Blood Pressure Targets For Vasopressor Therapy: A Systematic T
o Review." Shock 43, no. 6 (2015): 530-539. 36 (8]
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Finding Where We “Could” Wean Early?

05-19 16:56:00 05-19 20:59:00 05-20 03:18:00  05-20 18:01:00
LOW CVP,RISING ‘HYPOVOLEMIC | ["ATTEMPT TO | |"wean neo gtt to
HCT ... CONTINUED | [ WLOW CVP ... WEAN OFF keep sbp> 90"
NEOSYN.) INCREASING TODAY~
NEO NEEDS”

Log Probability of Successful Wean

0 10 20 30 40
Hours Past 3294.05-19 12:45:00 EST

e One example of a 62-year-old male patient with a cardiac
catheterization.

e More complexity/higher misclassification penalty don’t solve this!

. \%
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Part 3: Forecast Response to An Intervention

e Fully paired biomedical datasets are
oPrivacy sensitive
oExpensive and difficult to collect
oOften homogenous

— =)

W W

o Sufficiently large, heterogeneous paired datasets are rare.

:v;; T
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Using Adversarial Training To Overcome

Missingness

e GANSs are used for data augmentation’, imputation?.

?

——————

—

——————

e \We use adversarial learning techniques to learn distributional signals

from additional, unpaired data to augment predictions on a limited

training set.

UNIVERSITY OF

TORONTO
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s [1] Armanious K, Yang C, Fischer M, Kustner T, Nikolaou K, Gatidis S, Yang B. MedGAN: Medical Image Translation using GANSs. arXiv preprint arXiv:1806.06397. 2018 Jun 17.
% [2] Yoon J, Jordon J, van der Schaar M. GAIN: Missing Data Imputation using Generative Adversarial Nets. arXiv preprint arXiv:1806.02920. 2018 Jun 7.
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Model Learns on Unpaired Data, GX Used to Eval

e Ensure generated samples are realistic, account for missing samples

(not just missing features), and ensure cycle/self-consistency.’

Source domain (X) G X-Y Target domain (Y)

0O OO -f—| encoding (X) encoding (Y) \XX XX

3) Cycle-consistent

Wasserstein D Reconstruction Loss D Wasserstein
critic critic
X Y
1) Adversarial loss 2) Adversarial loss
between Dy and G, between D,, and G,
[1] Ghasedi Dizaji K, Wang X, Huang H. Semi-Supervised Generative Adversarial Network for Gene Expression Inference. InProceedings of the 24th ACM SIGKDD International Conference on Knowledge

% Discovery & Data Mining 2018 Jul 19 (pp. 1435-1444). ACM.
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Improved Intervention Response Prediction

Intervention Type

Model MSE VENT = NOREP DOP  PHEN
Baseline MLP 3.780  2.829 2719 3.186
CWR-GAN (% Delta) 0.5% @ -7.4% +2.7% -4.5%

e Mean-squared-error of a traditional MLP on only paired intervention data vs. the
CWR-GAN augmented with data that failed to meet inclusion criteria on either the
pre-intervention side or post-intervention side (~500 paired, ~3,000 unpaired patients).

’ T;?J:? ¢
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The Problem With Models That Learn...

predict
Pre Post
111 QR i i |

Patient 1: PWsapympe™

| taditodl .
. o AN g

24h VENT! 24h

e EXxciting work on to be done on learning what treatments are best for
individuals based on environment and context!

e But there are other factors...

42 -\27\
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Health Questions Beyond The Obvious

Across these use cases, a number of ethical, social, and political
challenges are raised and the 10 most important are:

01
02

03

04
05
06
07
08

09

10

What effect will Al have on]lhuman relationships in health|and care?

How is the use, storage and sharing of medical data impacted by Al2

What are the implications of issues around algorithmic transparency/explainability
on health?

Will these|technologies help eradicate or exacerbate existing health inequclitiesF

What is the difference between an algorithmic decision and a human decision?
What do patients and members of the public want from Al and related technologies?
How should these technologies be regulated?

Just because these technologies could enable access to new information, should we
always use ite

What makes algorithms, and the entities that create them, trustworthy?

What are the implications of collaboration between public and private sector
organisations in the development of these tools?

@é@’ [1] “Ethical, social, and political challenges of artificial intelligence in Health”. Wellcome Trust April 2018. © Future Advocacy.
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Machine Learning For Health (ML4H)

o/ 1. What Models are Healthy? Learning Good Representations.

o Unfolding Physiological State: Mortality Modelling in Intensive Care Unit (KDD 2014); A Multivariate Timeseries
Modeling Approach to Severity of lliness Assessment and Forecasting in ICU ... (AAAI 2015);

Predicting Early Psychiatric Readmission with Natural Language Processing of Narrative ... (Nature Trans Psych 2016);
Predicting Intervention Onset in the ICU with Switching State Space Models (AMIA-CRI 2017);

Clinical Intervention Prediction and Understanding using Deep Networks (MLHC 2017/JMLR W&C V68);
Semi-supervised Biomedical Translation with Cycle Wasserstein Regression GANs (AAAI 2018);

&. What Healthcare is Healthy? Stratifyving Human Risks. ]

Continuous State-Space Models for Optimal Sepsis Treatment - Deep Reinforcement Learning ... (MLHC/JMLR 2017);
Modeling Mistrust in End-of-Life Care (MLHC 2018/FATML 2018 Workshop);

The Disparate Impacts of Medical and Mental Health with Al. (In submission);

ClinicalVis Project with Google Brain. (*In submission);

Learning to Detect Vocal Hyperfunction from Ambulatory Necksurface Acceleration Features (IEEE TBME 2014);
Uncovering Voice Misuse Using Symbolic Mismatch (MLHC 2016/JMLR W&C V56);
Project BASELINE Mood Study with Alphabet’s Verily;

@ 3. What Behaviors are Healthy? Inferring Unseen Actions and States.

oo 7\
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Modelling Mistrust in EOL Care

l 2235 2790

e Replicate documented racial disparities in open databases.

—
o

10 4

\
\

Cumulative Probability
o
(=]
\\
Cumulative Probability
o
(= )

(a) MIMIC Mechanical Ventilation
White: 4810 patients
Black: 510 patients

\

(b) eICU Mechanical Ventilation
White: 4911 patients
Black: 655 patients

; 0.4 0.4
0.2 :
— Black — Black
ol 11— ] A
0 2000 4000 6000 8000 10000 0 2000 4000. 6000 8000 10000
Mechanical Ventilation Duration (minutes) Vent Duration (minutes)

e Algorithmically mistrust demonstrates treatment disparity > than race,
even with acuity factored in.

10, 2100 4680

§ o8 Table 4: Pairwise Pearson correlation coefficients between scores.

2 0.6

E - OASIS | SAPS II | Noncompliance | Autopsy | Sentiment

5 = OASIS 1.0 0.679 0.050 -0.012 0.075

£ 0.2 |

3 | . —— Low Trust SAPS 11 0.679 1.0 0.013 -0.013 0.086
0’00 2060 40'00k 6000 8000 10000 Noncompliance 0.050 0.013 1.0 0.262 0.058

Vent Duration (minutes) Autopsy -0.012 | -0.013 0.262 1.0 0.044

(a) Mechanical Ventilation Sentiment 0.075 0.086 0.058 0.044 1.0

High Trust: 4810 patients
Low Trust: 510 patients
p < 0.001

.-;Utv!”?:“,z‘
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Disparate Impacts of Medical and Mental Health

e \We can predict ICU mortality and 30-day psychiatric readmission,
but notes have group-specific heterogeneity.

COPD (Topic 10) Substance Abuse (Topic 49)
0.025

e Significant differences in model accuracy for race, sex, and insurance
type in ICU notes and insurance type in psychiatric notes.

Asian [ =
Black = Private HEH
Hisp [——— T ——
oth - PubI HEH Privat —a—
White A
Publ |—.—|
Zero-one loss Zero-one loss
...... 0.205 0.210 0.215 0.220 0.225 0.2
Femal —— Zero-one loss
7',’.:: Male' * T
x;\,_:” '-\;;:‘ 6
IIIIIIIIIII I I O I 46 ‘
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ClinicalVis: Supporting Clinical Task-Focused
Design Evaluation

2. Ask HCPs to plan care for two
interventions in an elCU simulation.

1. Present real patient data to HCPs using open-source prototype.

D Needs vasopressor

O Veryunsure O Unsure O Confident O Very confident

[ Needs ventilator

Patient Information Selected Note 6/27/2165, 3:21:00 AM Patient Timeline O Veryunsure O Unsure O Confident O Very confident

: Isiig brogress hcte 09AM 12PM 03PM 06PM 09PM 12AM 03AM 06 AM
Jane Doe L H . . . H H H

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula

7 eget dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis parturient Notes I
montes, nascetur ridiculus mus.
N Donec quam felis, ultricies nec, pellentesque eu, pretium quis, sem. Nulla consequat
massa quis enim. Donec pede justo, fringilla vel, aliquet nec, vulputate eget, arcu. In Labs
Ethnicit enim justo, thoncus ut, imperdiet a, venenatis vitae, justo. I
DICTUM
Nullam dictum felis eu pede mollis pretium
ACTIRYNG VS0 Vital 09 AM 12PM 03PM 06PM 09PM 12AM 03AM 06 AM H
CONGESTIVE HEART FAILURE Integer tincidunt. Cras dapibus. Vivamus elementum semper nisi. Aenean vulputate : ‘ ) 1 : : : 3 . Eval u at e t h e C O n fl d e n C e y aC C u racy a n d

eleifend tellus. Aenean leo ligula, porttitor eu, consequat vitae, eleifend ac, enim
Temperature (¢

CCl;‘ | Aliquam lorem ante, dapibus in, viverra quis, feugiat &, tellus. Phasellus viverra nulla o ~ i - ‘ = . t i m e = to -t aS k u n d e r d i ffe re nt V i S u a I

ut metus varius laoreet. Quisque rutrum. Aenean imperdiet. Etiam ultricies nisi vel

augue, Curabitur ullamcorper ultricies nisi. Nam eget dui. Etiam thoncus 9
I T 5 prototypes.
Maecenas tempus, tellus eget condimentum rhoncus, sem quam semper libero, sit 5 S - N
amet adinisring som naniie cod ineim_Nam auam nine hlandit vel hietie nilvinar "s
138
Selected Labs 6/27/2165, 6:00:00 AM solablood s g :
pressure (mmHg) = et e v
E 809 =y
Potassium 4.6
78
Diastolic blood ®F A
Glucose 183 4 " ety - e
pressure (mmHg| - w8 ey AT, S . . 0 0
Baseline 50.00 % 56.25 %

il i T e : : Accuracy (%)

pressure

Hematocrit 28 g e 66.1 < sl . — o oSt ; C|InICa|VIS 68.88 % 62-79 %

Sodium Respiratory

Chiorde L — . ey Confidence Baseline 0.68 0.87

Blood urea nitrogen Oxygen g, - I S e
il ; Score ClinicalVis 1.41 1.27
" B N i i Average Time Baseline 92.31s 092.73 s
to Task
(seconds) ClinicalVis 84.43 s 86.86 s
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Future of Machine Learning For Health (ML4H)

‘ S / 1. What Models are Healthy? Learning Good Representations.
- - Balancing multi-target output learning

@ - Finding useful abstractions
- “Explaining” decisions in case/controls

2. What Healthcare is Healthy? Stratifying Human Risks.
- Providing meaningful, calibrated notions of uncertainty

= - Finding causes and establishing causality

- Defining and targeting fairness

3. What Behaviors are Healthy? Inferring Unseen Actions and States.
- Data quality and availability

000 - Real-time decision making
- Robustness in the face of unexpected data

N
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ML4H @ UToronto Team!

Visit http://www.marzyehghassemi.com/ for more information.

University of Toronto MIT
Students Students

Bret Denny Matthew Irene Harini
Nestor Wu McDermott Chen Suresh

Clinical Collaborators

Dr. Muhammad  Dr. Leo Tristan Rajesh Anna Andrew Peter
Mamdani  Anthony Celi Naumann Ranganath Goldenburg Beam Szolovits
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http://ml4h.cs.toronto.edu/

What Can You Do?

e Help Identify Targets for Clinical Machine Learning That Matters!

Establish clinical opinions on existing ML targets, and suggest additional targets.
https://goo.gl/forms/xEd9fcWcO80GuNJt1

e Mentor a Team in New Project-Based CS Grad Course for ML students!
Create collaborations between technical and non-technical researchers, and
consider the implications of machine learning in health. If you have a potential
project with a) data that students could access, b) a supervisor for the Winter
term, and c) an interest in publishing the work with the student if it goes well!
Topics in Machine Learning: Machine Learning for Health

e Indicate interest in ML4H 2019 Unconference held in Toronto, Ontario!
Invitational "unconference"” style meeting in May 2019 to facilitate junior ML
researchers and doctors connecting. Many projects in ML4H suffer from a
mismatch in data, tools, and skills. Our focus this year will be on What Problems
Should ML4H Be Solving?

https://goo.gl/forms/jzlvKaDpxfY0OdoYy2

. V
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https://goo.gl/forms/xEd9fcWcO80GuNJt1
http://web.cs.toronto.edu/Graduate/currentgradstudents/Graduate_Course_Descriptions.htm#csc2541m
http://web.cs.toronto.edu/Graduate/currentgradstudents/Graduate_Course_Descriptions.htm#csc2541m
https://goo.gl/forms/jzIvKaDpxfY0doYy2

Machine Learning For Health (ML4H)

4
4

000
What models are What healthcare iIs What behaviors
healthy? healthy? are healthy?
L . V
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